Inositol phosphates and phosphoinositides activate insulin-degrading enzyme, while phosphoinositides also mediate binding to endosomes.

نویسندگان

  • Eun Suk Song
  • HyeIn Jang
  • Hou-Fu Guo
  • Maria A Juliano
  • Luiz Juliano
  • Andrew J Morris
  • Emilia Galperin
  • David W Rodgers
  • Louis B Hersh
چکیده

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid β peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PTB domain of insulin receptor substrate-1 binds inositol compounds.

We examined whether a phosphotyrosine binding (PTB) domain from the human insulin receptor substrate-1 (hIRS-1) is capable of binding inositol phosphates/phosphoinositides. The binding specificity was compared with that of the pleckstrin homology (PH) domain derived from the same protein because the three dimensional structure was found to be very similar to that of the PH domain, despite the l...

متن کامل

Molecular characterization of an Arabidopsis gene encoding a phospholipid-specific inositol polyphosphate 5-phosphatase.

Phosphoinositides are important molecules that serve as second messengers and bind to a complex array of proteins modulating their subcellular location and activity. The enzymes that metabolize phosphoinositides can in some cases serve to terminate the signaling actions of phosphoinositides. The inositol polyphosphate 5-phosphatases (5PTases) comprise a large protein family that hydrolyzes 5-ph...

متن کامل

Pleckstrin homology (PH) domains and phosphoinositides.

PH (pleckstrin homology) domains represent the 11th most common domain in the human proteome. They are best known for their ability to bind phosphoinositides with high affinity and specificity, although it is now clear that less than 10% of all PH domains share this property. Cases in which PH domains bind specific phosphoinositides with high affinity are restricted to those phosphoinositides t...

متن کامل

Phosphoinositides and the regulation of tubular-based endosomal sorting.

From the pioneering work of Mabel and Lowell Hokin in the 1950s, the biology of this specific isomer of hexahydroxycyclohexane and its phosphorylated derivatives, in the form of inositol phosphates and phosphoinositides, has expanded to fill virtually every corner of cell biology, whole-organism physiology and development. In the present paper, I give a personal view of the role played by phosp...

متن کامل

Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates.

3-phosphoinositide-dependent protein kinase-1 (PDK1) phosphorylates and activates many kinases belonging to the AGC subfamily. PDK1 possesses a C-terminal pleckstrin homology (PH) domain that interacts with PtdIns(3,4,5)P3/PtdIns(3,4)P2 and with lower affinity to PtdIns(4,5)P2. We describe the crystal structure of the PDK1 PH domain, in the absence and presence of PtdIns(3,4,5)P3 and Ins(1,3,4,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 14  شماره 

صفحات  -

تاریخ انتشار 2017